Immobilized Burkholderia cepacia Lipase on pH-Responsive Pullulan Derivatives with Improved Enantioselectivity in Chiral Resolution
نویسندگان
چکیده
A kind of pH-responsive particle was synthesized using modified pullulan polysaccharide. The synthesized particle possessed a series of merits, such as good dispersity, chemical stability and variability of particle size, making it a suitable carrier for enzyme immobilization. Then, Burkholderia cepacia lipase (BCL), a promising biocatalyst in transesterification reaction, was immobilized on the synthesized particle. The highest catalytic activity and immobilization efficiency were achieved at pH 6.5 because the particle size was obviously enlarged and correspondingly the adsorption surface for BCL was significantly increased. The immobilization enzyme loading was further optimized, and the derivative lipase was applied in chiral resolution. Under the optimal reaction conditions, the immobilized BCL showed a very good performance and significantly shortened the reaction equilibrium time from 30 h of the free lipase to 2 h with a conversion rate of 50.0% and ees at 99.2%. The immobilized lipase also exhibited good operational stability; after being used for 10 cycles, it still retained over 80% of its original activity. Moreover, it could keep more than 80% activity after storage for 20 days at room temperature in a dry environment. In addition, to learn the potential mechanism, the morphology of the particles and the immobilized lipase were both characterized with a scanning electron microscope and confocal laser scanning microscopy. It was found that the enlarged spherical surface of the particle in low pH values probably led to high immobilized efficiency, resulting in the improvement of enantioselectivity activity in chiral resolution.
منابع مشابه
Control of lipase enantioselectivity by engineering the substrate binding site and access channel.
Lipase from Burkholderia cepacia (BCL) has proven to be a very useful biocatalyst for the resolution of 2-substituted racemic acid derivatives, which are important chiral building blocks. Our previous work showed that enantioselectivity of the wild-type BCL could be improved by chemical engineering of the substrate's molecular structure. From this earlier study, three amino acids (L17, V266 and...
متن کاملAdditives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel.
Effects of various additives on the lipase from Burkholderia cepacia (BcL) immobilized on mixed-function-grafted mesoporous silica gel support by hydrophobic adsorption and covalent attachment were investigated. Catalytic properties of the immobilized biocatalysts were characterized in kinetic resolution of racemic 1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b). Screening of ...
متن کاملEfficient Improving the Activity and Enantioselectivity of Candida rugosa Lipase for the Resolution of Naproxen by Enzyme Immobilization on MCM-41 Mesoporous Molecular Sieve
Lipase from Candida rogusa was immobilized on MCM-41 mesoporous molecular sieves in a trapped aqueous-organic biphase system for the resolution of racemic naproxen methyl ester. It was interesting that the activity and enantioselectivity of the immobilized lipase were improved significantly relative to the free enzyme. The proportion of water (ml)/support (g) has a dramatic influence on the act...
متن کاملImproving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1- phenylethanol in non-aqueous medium
BACKGROUND Burkholderia cepacia lipase (BCL) has been proved to be capable of resolution reactions. However, its free form usually exhibits low stability, bad resistance and no reusability, which restrict its further industrial applications. Therefore, it is of great importance to improve the catalytic performance of free lipase in non-aqueous medium. RESULTS In this work, macroporous resin N...
متن کاملA structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
A novel approach based on efficient path-planning algorithms was applied to investigate the influence of substrate access on Burkholderia cepacia lipase enantioselectivity. The system studied was the transesterification of 2-substituted racemic acid derivatives catalysed by B. cepacia lipase. In silico data provided by this approach showed a fair qualitative agreement with experimental results,...
متن کامل